Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Cell Rep ; 43(4): 114094, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38613784

RESUMEN

The importance of trained immunity in antitumor immunity has been increasingly recognized, but the underlying metabolic regulation mechanisms remain incompletely understood. In this study, we find that squalene epoxidase (SQLE), a key enzyme in cholesterol synthesis, is required for ß-glucan-induced trained immunity in macrophages and ensuing antitumor activity. Unexpectedly, the shunt pathway, but not the classical cholesterol synthesis pathway, catalyzed by SQLE, is required for trained immunity induction. Specifically, 24(S),25-epoxycholesterol (24(S),25-EC), the shunt pathway metabolite, activates liver X receptor and increases chromatin accessibility to evoke innate immune memory. Meanwhile, SQLE-induced reactive oxygen species accumulation stabilizes hypoxia-inducible factor 1α protein for metabolic switching into glycolysis. Hence, our findings identify 24(S),25-EC as a key metabolite for trained immunity and provide important insights into how SQLE regulates trained-immunity-mediated antitumor activity.


Asunto(s)
Ratones Endogámicos C57BL , Escualeno-Monooxigenasa , Animales , Escualeno-Monooxigenasa/metabolismo , Ratones , Colesterol/metabolismo , Colesterol/biosíntesis , Colesterol/análogos & derivados , Receptores X del Hígado/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/efectos de los fármacos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Inmunidad Innata/efectos de los fármacos , Humanos , Línea Celular Tumoral
2.
Clin Transl Med ; 14(2): e1586, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38372422

RESUMEN

BACKGROUND: Osteosarcoma (OSA) presents a clinical challenge and has a low 5-year survival rate. Currently, the lack of advanced stratification models makes personalized therapy difficult. This study aims to identify novel biomarkers to stratify high-risk OSA patients and guide treatment. METHODS: We combined 10 machine-learning algorithms into 101 combinations, from which the optimal model was established for predicting overall survival based on transcriptomic profiles for 254 samples. Alterations in transcriptomic, genomic and epigenomic landscapes were assessed to elucidate mechanisms driving poor prognosis. Single-cell RNA sequencing (scRNA-seq) unveiled genes overexpressed in OSA cells as potential therapeutic targets, one of which was validated via tissue staining, knockdown and pharmacological inhibition. We characterized changes in multiple phenotypes, including proliferation, colony formation, migration, invasion, apoptosis, chemosensitivity and in vivo tumourigenicity. RNA-seq and Western blotting elucidated the impact of squalene epoxidase (SQLE) suppression on signalling pathways. RESULTS: The artificial intelligence-derived prognostic index (AIDPI), generated by our model, was an independent prognostic biomarker, outperforming clinicopathological factors and previously published signatures. Incorporating the AIDPI with clinical factors into a nomogram improved predictive accuracy. For user convenience, both the model and nomogram are accessible online. Patients in the high-AIDPI group exhibited chemoresistance, coupled with overexpression of MYC and SQLE, increased mTORC1 signalling, disrupted PI3K-Akt signalling, and diminished immune infiltration. ScRNA-seq revealed high expression of MYC and SQLE in OSA cells. Elevated SQLE expression correlated with chemoresistance and worse outcomes in OSA patients. Therapeutically, silencing SQLE suppressed OSA malignancy and enhanced chemosensitivity, mediated by cholesterol depletion and suppression of the FAK/PI3K/Akt/mTOR pathway. Furthermore, the SQLE-specific inhibitor FR194738 demonstrated anti-OSA effects in vivo and exhibited synergistic effects with chemotherapeutic agents. CONCLUSIONS: AIDPI is a robust biomarker for identifying the high-risk subset of OSA patients. The SQLE protein emerges as a metabolic vulnerability in these patients, providing a target with translational potential.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Escualeno-Monooxigenasa , Humanos , Inteligencia Artificial , Biomarcadores , Osteosarcoma/tratamiento farmacológico , Osteosarcoma/genética , Fosfatidilinositol 3-Quinasas , Pronóstico , Proteínas Proto-Oncogénicas c-akt , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo
3.
Medicine (Baltimore) ; 103(6): e37030, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38335381

RESUMEN

Squalene epoxidase (SQLE) is an essential enzyme involved in cholesterol biosynthesis. However, its role in sarcoma and its correlation with immune infiltration remains unclear. All original data were downloaded from The Cancer Genome Atlas (TCGA). SQLE expression was explored using the TCGA database, and correlations between SQLE and cancer immune characteristics were analyzed via the TISIDB databases. Generally, SQLE is predominantly overexpressed and has diagnostic and prognostic value in sarcoma. Upregulated SQLE was associated with poorer overall survival, poorer disease-specific survival, and tumor multifocality in sarcoma. Mechanistically, we identified a hub gene that included a total of 82 SQLE-related genes, which were tightly associated with histone modification pathways in sarcoma patients. SQLE expression was negatively correlated with infiltrating levels of dendritic cells and plasmacytoid dendritic cells and positively correlated with Th2 cells. SQLE expression was negatively correlated with the expression of chemokines (CCL19 and CX3CL1) and chemokine receptors (CCR2 and CCR7) in sarcoma. In conclusion, SQLE may be used as a prognostic biomarker for determining prognosis and immune infiltration in sarcoma.


Asunto(s)
Sarcoma , Escualeno-Monooxigenasa , Humanos , Pronóstico , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Biomarcadores de Tumor/genética , Sarcoma/genética
4.
Microb Cell Fact ; 23(1): 34, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38273342

RESUMEN

BACKGROUND: Squalene epoxidase is one of the rate-limiting enzymes in the biosynthetic pathway of membrane sterols and triterpenoids. The enzyme catalyzes the formation of oxidized squalene, which is a common precursor of sterols and triterpenoids. RESULT: In this study, the squalene epoxidase gene (PcSE) was evaluated in Poria cocos. Molecular docking between PcSE and squalene was performed and the active amino acids were identified. The sgRNA were designed based on the active site residues. The effect on triterpene synthesis in P. cocos was consistent with the results from ultra-high-performance liquid chromatography-quadruplex time-of-flight-double mass spectrometry (UHPLC-QTOF-MS/MS) analysis. The results showed that deletion of PcSE inhibited triterpene synthesis. In vivo verification of PcSE function was performed using a PEG-mediated protoplast transformation approach. CONCLUSION: The findings from this study provide a foundation for further studies on heterologous biosynthesis of P. cocos secondary metabolites.


Asunto(s)
Fitosteroles , Triterpenos , Wolfiporia , Espectrometría de Masas en Tándem/métodos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Wolfiporia/genética , Wolfiporia/metabolismo , Simulación del Acoplamiento Molecular , Escualeno , Sistemas CRISPR-Cas , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Triterpenos/metabolismo
5.
Cell Signal ; 114: 110983, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37993027

RESUMEN

Cholesterol biosynthesis and metabolism are critical aspects that shape the process of tumor development and associated microenvironmental conditions owing to the ability of cholesterol to drive tumor growth and invasion. Squalene Epoxidase (SQLE) is the second rate-limiting enzyme involved in the synthesis of cholesterol. The functional role of SQLE within the tumor microenvironment, however, has yet to be established. Here we show that SQLE is distinctively expressed across most types of cancer, and the expression level is highly correlated with tumor mutation burden and microsatellite instability. Accordingly, SQLE was identified as a prognostic risk factor in cancer patients. In addition, we observed a negative correlation between SQLE expression and immune cell infiltration across multiple cancers, and murine xenograft model further confirmed that SQLE knockdown was associated with enhanced intratumoral CD8+ T cell infiltration. Using next-generation sequencing, we identified 410 genes distinctively expressed in tumors exhibiting SQLE inhibition. KEGG and GO analysis further verified that SQLE altered the immune response in the tumor microenvironment. Furthermore, we found that the metabolism and translation of proteins is the main binding factor with SQLE. Our findings ascertain that SQLE is a potential target in multiple cancers and suppressing SQLE establishes an essential mechanism for shaping tumor microenvironment.


Asunto(s)
Linfocitos T CD8-positivos , Escualeno-Monooxigenasa , Microambiente Tumoral , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Colesterol , Neoplasias/genética , Neoplasias/metabolismo , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo
6.
Int J Biol Sci ; 19(15): 4831-4832, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781510

RESUMEN

The transcription factors p53 and MYC are often considered non-druggable targets, but their dysregulation can generate new dependencies and treatment opportunities in cancer cells. The p53 and MYC-regulated squalene epoxidase (SQLE) has been identified as a potential Achilles heel in colorectal cancer. This is of great interest because the FDA-approved anti-fungal SQLE inhibitor Terbinafine could be repurposed to treat colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , Escualeno-Monooxigenasa , Humanos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Proteína p53 Supresora de Tumor/genética , Terbinafina , Mutación , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética
7.
Cell Death Dis ; 14(8): 497, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542052

RESUMEN

Pancreatic cancer (PC), a highly lethal malignancy, commonly exhibits metabolic reprogramming that results in therapeutic vulnerabilities. Nevertheless, the mechanisms underlying the impacts of aberrant cholesterol metabolism on PC development and progression remain elusive. In this study, we found that squalene epoxidase (SQLE) is a crucial mediator of cholesterol metabolism in PC growth. We observed a profound upregulation of SQLE in PC tissues, and its high expression was correlated with poor patient outcomes. Our functional experiments demonstrated that SQLE facilitated cell proliferation, induced cell cycle progression, and inhibited apoptosis in vitro, while promoting tumor growth in vivo. Mechanistically, SQLE was found to have a dual role. First, its inhibition led to squalene accumulation-induced endoplasmic reticulum (ER) stress and subsequent apoptosis. Second, it enhanced de novo cholesterol biosynthesis and maintained lipid raft stability, thereby activating the Src/PI3K/Akt signaling pathway. Significantly, employing SQLE inhibitors effectively suppressed PC cell proliferation and xenograft tumor growth. In summary, this study reveals SQLE as a novel oncogene that promotes PC growth by mitigating ER stress and activating lipid raft-regulated Src/PI3K/Akt signaling pathway, highlighting the potential of SQLE as a therapeutic target for PC.


Asunto(s)
Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-akt , Humanos , Línea Celular Tumoral , Proliferación Celular , Colesterol , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Escualeno-Monooxigenasa/metabolismo , Familia-src Quinasas
8.
Adv Sci (Weinh) ; 10(27): e2206878, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37490552

RESUMEN

Cisplatin resistance poses a substantial hurdle in effectively treating head and neck squamous cell carcinoma (HNSCC). Utilizing multiple tumor models and examining an internal HNSCC cohort, squalene epoxidase (SQLE) is pinpointed as a key driver of chemoresistance and tumorigenesis, operating through a cholesterol-dependent pathway. Comprehensive transcriptomic analysis reveals that SQLE is essential for maintaining c-Myc transcriptional activity by stabilizing the c-Myc protein and averting its ubiquitin-mediated degradation. Mechanistic investigation demonstrates that SQLE inhibition diminishes Akt's binding affinity to lipid rafts via a cholesterol-dependent process, subsequently deactivating lipid raft-localized Akt, reducing GSK-3ß phosphorylation at S9, and increasing c-Myc phosphorylation at T58, ultimately leading to c-Myc destabilization. Importantly, employing an Sqle conditional knockout mouse model, SQLE's critical role in HNSCC initiation and progression is established. The preclinical findings demonstrate the potent synergistic effects of combining terbinafine and cisplatin in arresting tumor growth. These discoveries not only provide novel insights into the underlying mechanisms of SQLE-mediated cisplatin resistance and tumorigenesis in HNSCC but also propose a promising therapeutic avenue for HNSCC patients unresponsive to conventional cisplatin-based chemotherapy.


Asunto(s)
Neoplasias de Cabeza y Cuello , Escualeno-Monooxigenasa , Animales , Ratones , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Cisplatino/farmacología , Cisplatino/uso terapéutico , Proteínas Proto-Oncogénicas c-akt , Resistencia a Antineoplásicos , Glucógeno Sintasa Quinasa 3 beta , Transformación Celular Neoplásica , Carcinogénesis , Colesterol , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
9.
Cancer Sci ; 114(9): 3595-3607, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37438885

RESUMEN

Endometrial cancer (EC) is a common malignant tumor that lacks any therapeutic target and, in many cases, recurrence is the leading ca use of morbidity and mortality in women. Widely known EC has a strongly positive correlation with abnormal lipid metabolism. Squalene epoxidase (SQLE), a crucial enzyme in the cholesterol synthesis pathway regulating lipid metabolic processes has been found to be associated with various cancers in recent years. Here, we focused on studying the role of SQLE in EC. Our study revealed that SQLE expression level was upregulated significantly in EC tissues. In vitro experiments showed that SQLE overexpression significantly promoted the proliferation, and inhibited cell apoptosis of EC cells, whereas SQLE knockdown or use of terbinafine showed the opposite results. Furthermore, we found out that the promotional effect of SQLE on the proliferation of EC cells might be achieved by activating the PI3K/AKT pathway. In vivo, studies confirmed that the knockdown of SQLE or terbinafine can observably inhibit tumor growth in nude mice. These results indicate that SQLE may promote the progression of EC by activating the PI3K/AKT pathway. Moreover, SQLE is a potential target for EC treatment and its inhibitor, terbinafine, has the potential to become a targeted drug for EC treatment.


Asunto(s)
Neoplasias Endometriales , Proteínas Proto-Oncogénicas c-akt , Humanos , Animales , Ratones , Femenino , Proteínas Proto-Oncogénicas c-akt/metabolismo , Terbinafina/farmacología , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratones Desnudos , Transducción de Señal , Neoplasias Endometriales/tratamiento farmacológico , Neoplasias Endometriales/genética , Proliferación Celular , Línea Celular Tumoral
10.
Plant Physiol ; 193(3): 2086-2104, 2023 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-37427787

RESUMEN

The acetylation-dependent (Ac/)N-degron pathway degrades proteins through recognition of their acetylated N-termini (Nt) by E3 ligases called Ac/N-recognins. To date, specific Ac/N-recognins have not been defined in plants. Here we used molecular, genetic, and multiomics approaches to characterize potential roles for Arabidopsis (Arabidopsis thaliana) DEGRADATION OF ALPHA2 10 (DOA10)-like E3 ligases in the Nt-acetylation-(NTA)-dependent turnover of proteins at global- and protein-specific scales. Arabidopsis has two endoplasmic reticulum (ER)-localized DOA10-like proteins. AtDOA10A, but not the Brassicaceae-specific AtDOA10B, can compensate for loss of yeast (Saccharomyces cerevisiae) ScDOA10 function. Transcriptome and Nt-acetylome profiling of an Atdoa10a/b RNAi mutant revealed no obvious differences in the global NTA profile compared to wild type, suggesting that AtDOA10s do not regulate the bulk turnover of NTA substrates. Using protein steady-state and cycloheximide-chase degradation assays in yeast and Arabidopsis, we showed that turnover of ER-localized SQUALENE EPOXIDASE 1 (AtSQE1), a critical sterol biosynthesis enzyme, is mediated by AtDOA10s. Degradation of AtSQE1 in planta did not depend on NTA, but Nt-acetyltransferases indirectly impacted its turnover in yeast, indicating kingdom-specific differences in NTA and cellular proteostasis. Our work suggests that, in contrast to yeast and mammals, targeting of Nt-acetylated proteins is not a major function of DOA10-like E3 ligases in Arabidopsis and provides further insight into plant ERAD and the conservation of regulatory mechanisms controlling sterol biosynthesis in eukaryotes.


Asunto(s)
Arabidopsis , Proteínas de Saccharomyces cerevisiae , Animales , Acetilación , Arabidopsis/genética , Arabidopsis/metabolismo , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Escualeno-Monooxigenasa/metabolismo , Esteroles , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
11.
Plant Cell Rep ; 42(5): 909-919, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894686

RESUMEN

KEYMESSAGE: CbSE overexpression increased stigmasterol levels and altered plant morphology. The genes upstream and downstream of CbSE were found to be upregulated, which confirms its regulatory role in the saponin biosynthetic pathway. Chlorophytum borivilianum is a high-value medicinal plant with many promising preclinical applications that include saponins as a major active ingredient. Squalene epoxidase (SE) is one of the major rate-limiting enzymes of the saponin biosynthetic pathway. Here, we functionally characterized C. borivilianum SE (CbSE) by over-expressing heterologously in Nicotiana tabacum. The heterologous expression of CbSE resulted in stunted pant growth with altered leaf and flower morphology. Next, RT-qPCR analysis of transgenic plants overexpressing CbSE revealed increased expression levels of Cycloartenol synthase (CAS), Beta amyrin synthase (ßAS), and cytochrome P450 monooxygenase 51 (CYP51) (Cytochrome P450), which encode key enzymes for triterpenoid and phytosterol biosynthesis in C. borivilianum. Further, Methyl Jasmonate (MeJa) treatment upregulated Squalene synthase (SQS), SE, and Oxidosqualene cyclases (OSCs) to a significant level. GC-MS analysis of the leaf and hairy roots of the transformants showed an increased stigmasterol content (0.5-1.0 fold) compared to wild type (WT) plants. These results indicate that CbSE is a rate-limiting gene, which encodes an efficient enzyme responsible for phytosterol and triterpenoid production in C. borivilianum.


Asunto(s)
Fitosteroles , Saponinas , Triterpenos , Nicotiana/genética , Nicotiana/metabolismo , Estigmasterol , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Regulación de la Expresión Génica de las Plantas
12.
J Obstet Gynaecol Res ; 49(5): 1383-1392, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36843235

RESUMEN

BACKGROUND: The mortality of cervical cancer (CC) is quite high and advanced CC is hard to cure. Accordingly, to find the mechanism of CC progression at molecular level is imminent. METHODS: The mRNA expression data were acquired from The Cancer Genome Atlas database, and squalene epoxidase (SQLE) level in the tumor and adjuvant tissues of CC was analyzed. The pathway enrichment analysis of target mRNAs was performed based on the GSEA database. The cancerous tissues and para-cancerous tissues of CC patients were collected for immunohistochemistry. SQLE and p53 mRNA expression was ensured by qRT-polymerase chain reaction. SQLE and p53 protein levels were determined by western blot. Cell functional assays focused on evaluating the malignant behaviors of cancer cells in each treatment group. Nude mouse xenograft models were constructed for tumorigenicity analysis. RESULTS: Bioinformatics analysis revealed that SQLE expression was high in CC tissues, which was linked to the poor prognosis. SQLE could affect the p53 signaling pathway. Cell functional assays demonstrated that SQLE expression was promoted in CC cell lines, and overexpressing SQLE facilitated the malignant phenotypes of CC cells, whereas silencing SQLE suppressed CC progression in vitro and in vivo. Besides, the repressed p53 signaling pathway could reverse the effect caused by silenced SQLE. CONCLUSION: SQLE could promote CC progression by modulating the p53 signaling pathway.


Asunto(s)
Neoplasias del Cuello Uterino , Animales , Femenino , Ratones , Humanos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Proteína p53 Supresora de Tumor , Transducción de Señal , Proteínas de Neoplasias/metabolismo , ARN Mensajero , Línea Celular Tumoral , Proliferación Celular/genética
13.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36768756

RESUMEN

Understanding the genetic mechanisms underlying milk production traits contribute to improving the production potential of dairy animals. Squalene epoxidase (SQLE) is one of the rate-limiting enzymes for cholesterol biosynthesis and was highly expressed in the buffalo mammary. The objectives of the present study were to detect the polymorphisms within SQLE in buffalo, the genetic effects of these mutations on milk production traits, and to understand the gene regulatory effects on buffalo mammary epithelial cells (BuMECs). A total of five SNPs were identified by sequencing, g.18858G > A loci were significantly associated with fat yield, and g.22834C > T loci were significantly associated with peak milk yield, milk yield, fat yield, and protein yield. Notably, linkage disequilibrium analysis indicated that 2 SNPs (g.18858G > A and g.22834C > T) formed one haplotype block, which was found to be significantly associated with milk fat yield, fat percentage, and protein yield. Furthermore, expression of SQLE was measured in different tissues of buffalo and was found to be higher in the mammary. Knockdown of SQLE gene expression significantly affected the growth of BuMECs, including proliferation, cell cycle, and apoptosis, and significantly downregulated the expression of related genes MYC, PCNA, and P21. In addition, knockdown of the SQLE gene significantly reduces triglyceride concentrations and the signal intensity of oil red O staining. In addition, silencing of SQLE was also found to regulate the synthesis and secretion of ß-casein and κ-casein negatively. Furthermore, SQLE knockdown is accompanied by the downregulation of critical genes (RPS6KB1, JAK2, eIF4E, and SREBP1) related to milk fat and protein synthesis. The current study showed the potential of the SQLE gene as a candidate for buffalo milk production traits. It provides a new understanding of the physiological mechanisms underlying buffalo milk production regulation.


Asunto(s)
Leche , Escualeno-Monooxigenasa , Animales , Leche/metabolismo , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Fenotipo , Haplotipos , Polimorfismo de Nucleótido Simple , Búfalos/genética
14.
Elife ; 122023 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-36655986

RESUMEN

Cholesterol synthesis is both energy- and oxygen-intensive, yet relatively little is known of the regulatory effects of hypoxia on pathway enzymes. We previously showed that the rate-limiting and first oxygen-dependent enzyme of the committed cholesterol synthesis pathway, squalene monooxygenase (SM), can undergo partial proteasomal degradation that renders it constitutively active. Here, we show hypoxia is a physiological trigger for this truncation, which occurs through a two-part mechanism: (1) increased targeting of SM to the proteasome via stabilization of the E3 ubiquitin ligase MARCHF6 and (2) accumulation of the SM substrate, squalene, which impedes the complete degradation of SM and liberates its truncated form. This preserves SM activity and downstream pathway flux during hypoxia. These results uncover a feedforward mechanism that allows SM to accommodate fluctuating substrate levels and may contribute to its widely reported oncogenic properties.


Cells need cholesterol to work properly but too much cholesterol is harmful and can contribute to atherosclerosis (narrowing of blood vessels), cancer and other diseases. Cells therefore carefully control the activity of the enzymes that are involved in making cholesterol, including an enzyme known as squalene monooxygenase. When the level of cholesterol in a cell rises, a protein called MARCHF6 adds molecules of ubiquitin to squalene monooxygenase. These molecules act as tags that direct the enzyme to be destroyed by a machine inside cells, known as the proteasome, thereby preventing further (unnecessary) production of cholesterol. Previous studies found that squalene monooxygenase is sometimes only partially broken down to make a shorter (truncated) form of the enzyme that is permanently active, even when the level of cholesterol in the cell is high. However, it was unclear what triggers this partial breakdown. The process of making cholesterol uses a lot of oxygen, yet many cancer cells thrive in tumours with low levels of oxygen. Here, Coates et al. used biochemical and cell biology approaches to study the effect of low oxygen levels on the activity of squalene monooxygenase in human cells. The experiments revealed that low oxygen levels trigger squalene monooxygenase to be partially degraded to make the truncated form of the enzyme. Firstly, MARCHF6 accumulates and adds ubiquitin to the enzyme to accelerate its delivery to the proteasome. Secondly, as the proteasome starts to degrade the enzyme, a build-up of squalene molecules impedes further breakdown of the enzyme. This mechanism preserves squalene monooxygenase activity when oxygen levels drop in cells, which may compensate for temporary oxygen shortfalls and allow cells to continue to make cholesterol. Squalene monooxygenase is overactive in individuals with a wide variety of diseases including fatty liver and prostate cancer. Drugs that block squalene monooxygenase activity have been shown to stop cancer cells from growing, but unfortunately these drugs are also toxic to mammals. These findings suggest that reducing the activity of squalene monooxygenase in more subtle ways, such as stopping it from being partially degraded, may be a more viable treatment strategy for cancer and other diseases associated with high levels of cholesterol.


Asunto(s)
Colesterol , Escualeno-Monooxigenasa , Humanos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/química , Escualeno-Monooxigenasa/metabolismo , Colesterol/metabolismo , Escualeno , Hipoxia , Oxígeno
15.
Gene Expr Patterns ; 47: 119298, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36509403

RESUMEN

Squalene epoxidase catalyzes the oxidation of squalene to 2,3-oxo-squalene (BsSE1), and is the key rate limiting enzyme in the synthesis of triterpenoids and sterols in plants. This study focused on the basic aspects of BsSE1 including the sequence information, sub-cellular localization expression patterns of BsSE1. Using to the sequence information of Bletilla striata transcriptome, the full-length CDS of BsSE1 gene was amplified. The physicochemical properties and structural characteristics of BsSE1 protein were analyzed by bioinformatics analysis software, and vector was constructed to analyze the protein locations and expression patterns. The results showed that the CDS of BsSE1 gene was 1542 bp, encoding 513 amino acids. BsSE1 protein is a hydrophobic protein with two transmembrane domains but no signal peptides. It is localied in the endoplasmic reticulum membrane and belongs to the typical squalene epoxidase gene. BsSE1 has the closest genetic relationship with SE protein of Dendrobium officinale and Phalaenopsis equestris. The expression level of BsSE1 was higher in pseudobulblet of Bletilla striata seedlings, followed by roots, and lower in seedling stems. After SA induction, the expression of BsSE1 in Bletilla striata showed significant changes, increased first, then decreased, finally increase again. The results provide a basis for further study of this gene family in plants.


Asunto(s)
Orchidaceae , Triterpenos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Escualeno/metabolismo , Orchidaceae/genética , Orchidaceae/metabolismo , Triterpenos/metabolismo , Clonación Molecular
16.
Life Sci Alliance ; 6(1)2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36368908

RESUMEN

A fluid membrane containing a mix of unsaturated and saturated lipids is essential for life. However, it is unclear how lipid saturation might affect lipid homeostasis, membrane-associated proteins, and membrane organelles. Here, we generate temperature-sensitive mutants of the sole fatty acid desaturase gene OLE1 in the budding yeast Saccharomyces cerevisiae Using these mutants, we show that lipid saturation triggers the endoplasmic reticulum-associated degradation (ERAD) of squalene epoxidase Erg1, a rate-limiting enzyme in sterol biosynthesis, via the E3 ligase Doa10-Ubc7 complex. We identify the P469L mutation that abolishes the lipid saturation-induced ERAD of Erg1. Overexpressed WT or stable Erg1 mutants all mislocalize into foci in the ole1 mutant, whereas the stable Erg1 causes aberrant ER and severely compromises the growth of ole1, which are recapitulated by doa10 deletion. The toxicity of the stable Erg1 and doa10 deletion is due to the accumulation of lanosterol and misfolded proteins in ole1 Our study identifies Erg1 as a novel lipid saturation-regulated ERAD target, manifesting a close link between lipid homeostasis and proteostasis that maintains sterol homeostasis under the lipid saturation condition for cell survival.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Escualeno-Monooxigenasa , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Supervivencia Celular , Degradación Asociada con el Retículo Endoplásmico , Saccharomyces cerevisiae/metabolismo , Homeostasis , Esteroles/metabolismo , Lípidos
17.
Br J Pharmacol ; 180(12): 1562-1581, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36581319

RESUMEN

BACKGROUND AND PURPOSE: Squalene epoxidase (SQLE) is a key enzyme involved in cholesterol biosynthesis, but growing evidence also reveals that SQLE is abnormally expressed in some types of malignant tumours, even though the underlying mechanism remains poorly understood. EXPERIMENTAL APPROACH: Bioinformatics analysis and RNA sequencing were applied to detect differentially expressed genes in clinical hepatocellular carcinoma (HCC). MTT, colony formation, AnnexinV-FITC/PI, EdU, wound healing, transwell, western blot, qRT-PCR, IHC, F-actin, RNA-sequencing, dual-luciferase reporters, and H&E staining were used to investigate the pharmacological effects and possible mechanisms of SQLE. KEY RESULTS: SQLE expression was specifically elevated in HCC, correlating with poor clinical outcomes. SQLE significantly promoted HCC growth, epithelial-mesenchymal transition, and metastasis both in vitro and in vivo. RNA sequencing and functional experiments revealed that the protumourigenic effect of SQLE on HCC was closely related to the activation of TGF-ß/SMAD signalling, but the stimulatory effect of SQLE on TGF-ß/SMAD signalling and HCC development is critically dependent on STRAP. SQLE expression is well correlated with STRAP in HCC, and further, to amplify TGF-ß/SMAD signalling, SQLE even transcriptionally increased STRAP gene expression mediated by AP-2α. Finally, as a chemical inhibitor of SQLE, NB-598 markedly inhibited HCC cell growth and tumour development. CONCLUSIONS AND IMPLICATIONS: Taken together, SQLE serves as a novel oncogene in HCC development by activating TGF-ß/SMAD signalling. Targeting SQLE could be useful in drug development and therapy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Línea Celular , Proliferación Celular/genética , Factor de Crecimiento Transformador beta/metabolismo , Línea Celular Tumoral , Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica
18.
CNS Neurosci Ther ; 28(12): 2104-2115, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35962621

RESUMEN

Chemoresistance in patients with glioblastoma multiforme (GBM) is a common reason hindering the success of treatment. Recently, ferroptosis has been reported to be associated with chemoresistance in different types of cancer, while the role of ferroptosis-related genes in GBM have not been fully elucidated. This study aimed to demonstrate the roles and mechanism of ferroptosis-related genes in chemoresistance and metastasis of GBM. First, two candidate genes, squalene epoxidase (SQLE) and FANCD2, were identified to be associated with ferroptosis-related chemoresistance in GBM from three temozolomide (TMZ) therapeutic datasets and one ferroptosis-related gene dataset. Then, comprehensive bio-informatics data from different databases testified that SQLE was significantly downregulated both in GBM tissue and cells and displayed a better prognosis in GBM. Clinical data identified lower expression of SQLE was significantly associated with WHO grade and 1p/19q codeletion. Moreover, through in vitro experiments, SQLE was confirmed to suppress ERK-mediated TMZ chemoresistance and metastasis of GBM cells. The KEGG analysis of SQLE-associated co-expressed genes indicated SQLE was potentially involved in the cell cycle. Furthermore, SQLE was found to have the most significant correlations with tumor-infiltrating lymphocytes and immunomodulators. These findings highlighted that SQLE could be a potential target and a biomarker for therapy and prognosis of patients with GBM.


Asunto(s)
Neoplasias Encefálicas , Ferroptosis , Glioblastoma , Escualeno-Monooxigenasa , Humanos , Antineoplásicos Alquilantes/uso terapéutico , Neoplasias Encefálicas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Temozolomida/uso terapéutico
19.
Int J Biol Sci ; 18(9): 3576-3591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35813482

RESUMEN

Recently, increasing attention has been paid to the role of Squalene epoxidase (SQLE) in several types of cancers. However, its functional role in tumor progression of head and neck squamous cell carcinoma (HNSCC) is still unclear. We performed bioinformatic analyses and relative experiments to assess the potential mechanism of SQLE-mediated HNSCC malignancy. And the results showed that SQLE was significantly upregulated in tumor samples compared with peritumor samples. Mechanistically, miR-584-5p downregulation may lead to the upregulation of SQLE in HNSCC. Moreover, high SQLE expression in HNSCC was associated with TNM stage, distant metastasis, and poor survival, indicating that SQLE be involved in the progression of HNSCC. Furtherly, SQLE boosted proliferation, migration, invasion of HNSCC cells in vitro and in vivo. Bioinformatic studies showed that PI3K/Akt signaling participated in HNSCC progression mediated by SQLE overexpression, which is confirmed by in vitro and in vivo analysis. Particularly, treatment with terbinafine, an inhibitor of SQLE widely used in the treatment of fungal infections, showed a therapeutic influence on HNSCC. Our findings demonstrate that SQLE plays a vital role in HNSCC progression, providing research evidence for SQLE as a prospective HNSCC therapeutic target and for terbinafine as a candidate drug of HNSCC treatment in the future.


Asunto(s)
Neoplasias de Cabeza y Cuello , Escualeno-Monooxigenasa , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias de Cabeza y Cuello/genética , Humanos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Estudios Prospectivos , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Terbinafina , Regulación hacia Arriba/genética
20.
Front Immunol ; 13: 864244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720314

RESUMEN

Background: Pancreatic adenocarcinoma (PAAD) is a treatment-refractory cancer with poor prognosis. Accumulating evidence suggests that squalene epoxidase (SQLE) plays a pivotal role in the development and progression of several cancer types in humans. However, the function and underlying mechanism of SQLE in PAAD remain unclear. Methods: SQLE expression data were downloaded from The Cancer Genome Atlas and the Genotype-Tissue Expression database. SQLE alterations were demonstrated based on the cBioPortal database. The upstream miRNAs regulating SQLE expression were predicted using starBase. The function of miRNA was validated by Western blotting and cell proliferation assay. The relationship between SQLE expression and biomarkers of the tumor immune microenvironment (TME) was analyzed using the TIMER and TISIDB databases. The correlation between SQLE and immunotherapy outcomes was assessed using Tumor Immune Dysfunction and Exclusion. The log-rank test was performed to compare prognosis between the high and low SQLE groups. Results: We demonstrated a potential oncogenic role of SQLE. SQLE expression was upregulated in PAAD, and it predicted poor disease-free survival (DFS) and overall survival (OS) in patients with PAAD. "Amplification" was the dominant type of SQLE alteration. In addition, this alteration was closely associated with the OS, disease-specific survival, DFS, and progression-free survival of patients with PAAD. Subsequently, hsa-miR-363-3p was recognized as a critical microRNA regulating SQLE expression and thereby influencing PAAD patient outcome. In vitro experiments suggested that miR-363-3p could knock down the expression of SQLE and inhibit the proliferation of PANC-1. SQLE was significantly associated with tumor immune cell infiltration, immune checkpoints (including PD-1 and CTLA-4), and biomarkers of the TME. KEGG and GO analyses indicated that cholesterol metabolism-associated RNA functions are implicated in the mechanisms of SQLE. SQLE was inversely associated with cytotoxic lymphocytes and predicted immunotherapy outcomes. Conclusions: Collectively, our results indicate that cholesterol metabolism-related overexpression of SQLE is strongly correlated with tumor immune infiltration and immunotherapy outcomes in patients with PAAD.


Asunto(s)
Adenocarcinoma , MicroARNs , Neoplasias Pancreáticas , Adenocarcinoma/genética , Adenocarcinoma/terapia , Colesterol , Regulación Neoplásica de la Expresión Génica , Humanos , Inmunoterapia , MicroARNs/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Escualeno-Monooxigenasa/genética , Escualeno-Monooxigenasa/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...